A Dynamical Compact Model of Diffusive and Drift Memristors for Neuromorphic Computing
نویسندگان
چکیده
Different from nonvolatile memory applications, neuromorphic computing applications utilize not only the static conductance states but also switching dynamics for computing, which calls compact dynamical models of memristive devices. In this work, a generalized model to simulate diffusive and drift memristors with same set equations is presented, have been used reproduce experimental results faithfully. The memristor chosen as basis because it possesses complex properties that are difficult efficiently. A data statistical measurements on SiO2:Ag collected verify validity general model. As an application example, spike-timing-dependent plasticity demonstrated artificial synapse consisting memristor, both modeled comprehensive
منابع مشابه
the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولinvestigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Design of Neuromorphic Architectures with Memristors
The advent of nanoscale memristor devices, which provide high-density multilevel memory, ultra-low static power consumption, and behavioral similarity to biological synapses, represents a major step towards emulating the incredible processing power of biological systems. In particular, memristors provide an avenue for designing neuromorphic implementations of artificial neural networks (ANNs) i...
متن کاملApplying Memristors Towards Low-Power, Dynamic Learning for Neuromorphic Applications
While neuromorphic computing offers methods to solve complex problems, current software-based networks offer limited flexibility and potential for low-power implementations. The memristive dynamic adaptive neural network array (mrDANNA) is a flexible hardwarebased system, with applications including, but not limited to real-time speech recognition and spatio-temporal navigation. We present simu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced electronic materials
سال: 2021
ISSN: ['2199-160X']
DOI: https://doi.org/10.1002/aelm.202100696